organic compounds

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.44 \text{ mm}^{-3}$

T = 118 (2) K $0.20 \times 0.06 \times 0.02 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloroquinoxaline

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 29 January 2009; accepted 29 January 2009

Key indicators: single-crystal X-ray study; T = 118 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.099; data-to-parameter ratio = 16.6.

In the title compound, $C_8H_5CIN_2$, the planar molecules are arranged with their Cl atoms in close contact $[Cl \cdot \cdot \cdot Cl = 3.808 (1) \text{ and } 3.881 (1) \text{ Å}]$, indicating weak $Cl \cdot \cdot \cdot Cl$ interactions, which give rise to a supramolecular chain.

Related literature

The title compound is a reagent in the synthesis of chloroquinoxaline sulfamide, which is active against human cancers. For the synthesis of other phamaceutically active derivatives through conventional and other synthetic routes, see: Bhattacharjee *et al.* (2008); Cuenca *et al.* (2008); Hassan *et al.* (2006); Rangisetty *et al.* (2001); Rizzo *et al.* (2002); Sugimoto *et al.* (2003).

Experimental

Crystal data C₈H₅ClN₂

 $M_r = 164.59$

Monoclinic, $P2_1/n$ a = 9.1299 (2) Å b = 3.8082 (1) Å c = 21.0777 (6) Å $\beta = 93.028$ (2)° V = 731.82 (3) Å³

Data collection

Bruker SMART APEX
diffractometer6145 measured reflections
1659 independent reflectionsAbsorption correction: multi-scan
(SADABS; Sheldrick, 1996)
 $T_{\min} = 0.916, T_{\max} = 0.991$ 6145 measured reflections
1173 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.048$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 100 \text{ parameters} \\ wR(F^2) = 0.099 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.29 \text{ e } \text{\AA}^{-3} \\ 1659 \text{ reflections} & \Delta\rho_{\min} = -0.30 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

I thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2366).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bhattacharjee, G., Sondhi, S. M., Dinodia, M. & Mishra, S. K. (2008). Ind. J. Chem. Technol. 15, 72–74.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cuenca, A., Perez, S., Yepez, A., Paredes, L., Montecinos, L., Llovera, L. & Rodriguez, C. (2008). J. Heterocycl. Chem. 45, 1199–1201.
- Hassan, S. Y., Khattab, S. N., Bekhit, A. A. & Amer, A. (2006). Bioorg. Med. Chem. Lett. 16, 1753–1756.
- Rangisetty, J. B., Gupta, C. N. V. H. B., Prasad, A. L., Srinivas, P., Sridhar, N., Parimoo, P. & Veeranjaneyulu, A. (2001). J. Pharm. Pharmacol. 53, 1409– 1413.
- Rizzo, A., Campos, G., Alvarez, A. & Cuenca, A. (2002). Synth. Commun. 32, 813–817.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sugimoto, O., Yamada, S. & Tanji, K. (2003). J. Org. Chem. 68, 2054-2057.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, o455 [doi:10.1107/S1600536809003717]

2-Chloroquinoxaline

S. W. Ng

Comment

(type here to add)

Experimental

The compound was returned unchanged in an attempt at coupling it wih benzoquinone. Crystals were obtained from recrystallization from a chloroform/ether mixture.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_8H_5ClN_2$; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius.

Fig. 2. Chain structure in C₈H₅ClN₂; the Cl···Cl contacts are shown as dashed bonds.

2-Chloroquinoxaline

Crystal data $C_8H_5CIN_2$ $M_r = 164.59$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn

 $F_{000} = 336$ $D_x = 1.494 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1328 reflections

a = 9.1299 (2) Å b = 3.8082 (1) Å c = 21.0777 (6) Å $\beta = 93.028 (2)^{\circ}$ $V = 731.82 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX diffractometer	1659 independent reflections
Radiation source: fine-focus sealed tube	1173 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.048$
T = 100 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.916, T_{\max} = 0.991$	$k = -4 \rightarrow 4$
6145 measured reflections	$l = -27 \rightarrow 27$

 $\theta = 2.4-28.1^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$

Prism, colorless

 $0.20\times0.06\times0.02~mm$

T = 118 K

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.0465P)^2 + 0.1632P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
1659 reflections	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
100 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.60849 (6)	0.47749 (15)	0.58158 (3)	0.03308 (19)
N1	0.88157 (18)	0.6668 (4)	0.57567 (8)	0.0202 (4)
N2	0.8977 (2)	0.9189 (4)	0.70202 (8)	0.0248 (4)
C1	0.7733 (2)	0.6552 (5)	0.61274 (10)	0.0219 (5)
C2	0.7783 (2)	0.7779 (6)	0.67617 (10)	0.0261 (5)
H2	0.6938	0.7575	0.7003	0.031*
C3	1.0163 (2)	0.9407 (5)	0.66453 (9)	0.0194 (4)
C4	1.1478 (2)	1.0934 (5)	0.68919 (10)	0.0231 (5)
H4	1.1540	1.1816	0.7314	0.028*
C5	1.2662 (2)	1.1150 (5)	0.65264 (10)	0.0250 (5)
H5	1.3549	1.2165	0.6696	0.030*

C6	1.2576 (2)	0.9872 (5)	0.589	70 (10)	0.0254 (5)	
H6	1.3408	1.0049	0.564	6	0.030*	
C7	1.1318 (2)	0.8385 (5)	0.564	22 (10)	0.0214 (4)	
H7	1.1275	0.7528	0.521	8	0.026*	
C8	1.0086 (2)	0.8132 (5)	0.601	39 (9)	0.0179 (4)	
Atomic displac	ement parameters	$s(A^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C11	0.0215 (3)	0.0305 (3)	0.0466 (4)	-0.0056 ((2) -0.0042 (2	2) 0.0009 (3)
N1	0.0187 (9)	0.0178 (8)	0.0239 (9)	0.0000 (7) -0.0020 (7	7) 0.0008 (7)
N2	0.0286 (10)	0.0243 (9)	0.0219 (9)	0.0009 (8) 0.0049 (8)	0.0013 (7)
C1	0.0190 (10)	0.0185 (10)	0.0277 (11)	-0.0005 ((8) -0.0029 (9	9) 0.0043 (9)
C2	0.0252 (12)	0.0257 (11)	0.0278 (12)	0.0006 (9) 0.0067 (9)	0.0018 (10)
C3	0.0234 (10)	0.0148 (9)	0.0200 (10)	0.0022 (8) 0.0005 (8)	0.0027 (8)
C4	0.0316 (12)	0.0177 (10)	0.0194 (11)	-0.0007 ((8) -0.0047 (9	9) -0.0008 (8)
C5	0.0247 (11)	0.0198 (10)	0.0296 (12)	-0.0018 ((8) -0.0066 (9	9) 0.0028 (9)
C6	0.0222 (11)	0.0232 (11)	0.0310 (12)	-0.0007 ((9) 0.0032 (9)	0.0045 (10)
C7	0.0256 (11)	0.0192 (10)	0.0195 (10)	0.0028 (9) 0.0019 (8)	0.0000 (9)
C8	0.0188 (10)	0.0144 (9)	0.0201 (10)	0.0014 (8) -0.0031 (8	8) 0.0028 (8)
C						
Geometric par	ameters (A, °)					
Cl1—C1		1.746 (2)	C4—	C5		1.363 (3)
N1-C1		1.293 (3)	C4—	H4		0.9500
N1—C8		1.372 (2)	С5—	C6		1.411 (3)
N2—C2		1.308 (3)	С5—	Н5		0.9500
N2—C3		1.376 (3)	C6—C7			1.365 (3)
C1—C2		1.415 (3)	С6—	H6		0.9500
C2—H2		0.9500	С7—	C8		1.408 (3)
C3—C4		1.409 (3)	С7—	H7		0.9500
C3—C8		1.415 (3)				
C1—N1—C8		115.61 (17)	С3—	С4—Н4		119.9

C3—C8	1.415 (3)		
C1—N1—C8	115.61 (17)	С3—С4—Н4	119.9
C2—N2—C3	116.68 (18)	C4—C5—C6	120.3 (2)
N1—C1—C2	124.93 (19)	С4—С5—Н5	119.9
N1-C1-Cl1	117.21 (16)	С6—С5—Н5	119.9
C2-C1-Cl1	117.87 (16)	C7—C6—C5	121.13 (19)
N2-C2-C1	120.92 (19)	С7—С6—Н6	119.4
N2—C2—H2	119.5	С5—С6—Н6	119.4
C1—C2—H2	119.5	C6—C7—C8	119.33 (19)
N2—C3—C4	119.62 (18)	С6—С7—Н7	120.3
N2—C3—C8	121.21 (18)	С8—С7—Н7	120.3
C4—C3—C8	119.18 (18)	N1—C8—C7	119.43 (18)
C5—C4—C3	120.18 (19)	N1—C8—C3	120.65 (18)
C5—C4—H4	119.9	C7—C8—C3	119.91 (18)
C8—N1—C1—C2	-0.5 (3)	C4—C5—C6—C7	-0.3 (3)
C8—N1—C1—Cl1	178.97 (14)	C5—C6—C7—C8	0.2 (3)
C3—N2—C2—C1	0.0 (3)	C1—N1—C8—C7	-179.61 (18)

N1—C1—C2—N2	0.6 (3)	C1—N1—C8—C3	0.0 (3)
Cl1—C1—C2—N2	-178.91 (16)	C6—C7—C8—N1	179.40 (18)
C2—N2—C3—C4	179.27 (19)	C6—C7—C8—C3	-0.2 (3)
C2—N2—C3—C8	-0.5 (3)	N2-C3-C8-N1	0.6 (3)
N2-C3-C4-C5	179.69 (18)	C4—C3—C8—N1	-179.22 (18)
C8—C3—C4—C5	-0.5 (3)	N2-C3-C8-C7	-179.87 (17)
C3—C4—C5—C6	0.5 (3)	C4—C3—C8—C7	0.3 (3)

